Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
1.
J Colloid Interface Sci ; 662: 535-544, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38364478

ABSTRACT

HYPOTHESIS: Surfactants are inexpensive chemicals with promising applications in virus inactivation, particularly for enveloped viruses. Yet, the detailed mechanisms by which surfactants deactivate coronaviruses remain underexplored. This study delves into the virucidal mechanisms of various surfactants on Feline Coronavirus (FCoV) and their potential applications against more pathogenic coronaviruses. EXPERIMENTS: By integrating virucidal activity assays with fluorescence spectroscopy, dynamic light scattering and laser Doppler electrophoresis, alongside liposome permeability experiments, we have analyzed the effects of non-ionic and ionic surfactants on viral activity. FINDINGS: The non-ionic surfactant octaethylene glycol monodecyl ether (C10EO8) inactivates the virus by disrupting the lipid envelope, whereas ionic surfactants like Sodium Dodecyl Sulfate and Cetylpyridinium Chloride predominantly affect the spike proteins, with their impact on the viral membrane being hampered by kinetic and thermodynamic constraints. FCoV served as a safe model for studying virucidal activity, offering a faster alternative to traditional virucidal assays. The study demonstrates that physicochemical techniques can expedite the screening of virucidal compounds, contributing to the design of effective disinfectant formulations. Our results not only highlight the critical role of surfactant-virus interactions but also contribute to strategic advancements in public health measures for future pandemic containment and the ongoing challenge of antimicrobial resistance.


Subject(s)
Coronavirus, Feline , Surface-Active Agents , Animals , Cats , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Coronavirus, Feline/physiology , Sodium Dodecyl Sulfate , Virus Inactivation
2.
Acta Trop ; 250: 107108, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145830

ABSTRACT

Parvoviruses are a major cause of haemorrhagic gastroenteritis, leukopenia and high mortality in cats and dogs. In this study, the presence and genetic characteristics of parvoviruses circulating among cats in Nigeria are reported. Faecal samples of stray cats from live animal markets in southwestern (Oyo and Osun States) and north-central (Kwara State) Nigeria were screened for the presence of parvoviral DNA using a qPCR. Positive samples were further characterized using a qPCR based on minor groove binder probes. Overall, 85/102 (83.3 %) stray cats tested positive for feline panleukopenia virus (FPV) DNA and one cat was co-infected with canine parvovirus-2 type a. Sequence analysis of the complete capsid region of 15 Nigerian FPV strains revealed that they were up to 99.9 % similar to the American reference strain FPV-b at the nucleotide level, and three of them presented amino acid mutations in key capsid residues. This is the first report of identification and molecular characterization of FPV strains in cats in Nigeria. The high prevalence of the virus emphasizes the need for constant surveillance of the circulation of parvoviruses in Nigeria and underscores the need to deploy an effective vaccination strategy.


Subject(s)
Feline Panleukopenia , Parvovirus, Canine , Parvovirus , Animals , Cats , Dogs , Feline Panleukopenia/epidemiology , Parvovirus, Canine/genetics , Nigeria/epidemiology , Phylogeny , Parvovirus/genetics , Feline Panleukopenia Virus/genetics , DNA
3.
Pathogens ; 12(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37887769

ABSTRACT

Severe acute respiratory syndrome-coronavirus type 2 (SARS-CoV-2) emerged in a live animal market in the Hubei Province of Wuhan in China in late 2019 and was declared a pandemic by the World Health Organization (WHO) on 11 March 2020 [...].

4.
Microbiol Spectr ; : e0249423, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37728570

ABSTRACT

Starting from June 2022, increased mortality associated with enteric signs was reported in European hedgehogs (Erinaceus europaeus) recovered at a regional wildlife rescue center, in Apulia, Italy. Cases of enteric disease were observed until the end of the breeding season, despite increased biosafety measures. A novel parvovirus was identified using metaviromic, and parvovirus-like particles were observed in the stools on electron microscopy observation. The virus was detected in the fecal samples of all the animals tested (n = 9) and in the internal organs (liver, spleen, and kidney) of three out of nine animals using a specific quantitative assay. In the full-length genome, the parvovirus was closely related (90.4% nt) to a chaphamaparvovirus identified in an Amur hedgehog (Erinaceus amurensis) in Asia and to chaphamaparvoviruses (≤ 70% nt) detected in bats and rodents. Since chaphamaparvoviruses are considered as pathogen in rodents, it will be important to investigate the pathogenic role, if any, of these parvoviruses in hedgehogs. IMPORTANCE European hedgehogs (Erinaceus europaeus) are common in Europe. This species has been shown to harbor occasionally zoonotic pathogens, including bacteria, fungi, and viruses. Exploring the virome of wildlife animals is important for animal conservation and also to assess zoonotic risks. Our metaviromic investigation identified a novel parvovirus from an outbreak of enteritis in European hedgehogs housed in a wildlife rescue center, extending the spectrum of potential viral pathogens in this species.

5.
Animals (Basel) ; 13(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36978659

ABSTRACT

Animal trade favors the spreading of emerging and re-emerging pathogens. Concerns have been previously expressed regarding the risks of dog trade in spreading zoonotic pathogens in Nigeria. However, the role of these dogs in disseminating highly pathogenic canine viruses has not yet been explored. The present study aimed to identify selected canine viruses in dogs traded for meat consumption in Nigeria. A total of 100 blood samples were screened for carnivore protoparvovirus-1 (CPPV-1), canine adenovirus 1/2 (CAdV-1/2), canine circovirus (CaCV), and canine distemper virus (CDV) by using real-time PCR and conventional PCR and/or sequencing. CPPV-1 DNA was identified in 83% of canine samples while CaCV DNA and CDV RNA were detected in 14% and 17% of the dog samples, respectively. None of the dogs tested positive for CAdV-1/2. The CaCVs identified in this study clustered along with other European, Asian, and American strains. Moreover, CDV strains identified in Nigeria clustered in a separate lineage with the closest genetic relatedness to the Europe-South America-1 clade. Further surveys prior to and after arrival of dogs at the slaughtering points are required to clarify the real virus burden in these animals.

6.
Vet Immunol Immunopathol ; 257: 110548, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36736103

ABSTRACT

African Swine Fever (ASF) is an acute hemorrhagic fever affecting suids with high mortality and morbidity rate. The causal agent of ASF, the African Swine Fever Virus (ASFV), is an icosahedral virus of 200 nm diameter, composed of an outer envelope layer of host derivation and a linear 170-190 kb long dsDNA molecule. As of today, no efficient therapeutic intervention nor prophylactic measures exist to fight ASFV diffusion, underlining the importance of the early diagnosis and the need for efficient in-field screening of ASF. Recommended guidelines for the diagnosis of ASF are unpracticable in the desirable context of the rapid in-farm screening. In this view, the design of innovative diagnostics based on a panel of multiple ASFV epitopes would amend versatility and the analytical performances of the deliverable, ensuring high quality and accuracy standards worth of implementation in rapid in-field monitoring programs. Pursuing this view, we performed epitope prediction from the major AFSV structural proteins holding the potential to be targeted in innovative rapid diagnostic tests. Selected ASFV structural protein sequences were retrieved from data repositories and their tridimensional structure was computed. Linear and 3D protein structures were subjected to the prediction of the epitope sequences, that are likely to elicit antibody production, by independent bioinformatic tools, providing a list of candidate biomarkers whose batch employment held the potential suitability for the unbiased rapid in-field diagnosis and, in turn, might be implemented in screening programs, crowing the current monitoring and control campaigns that are currently running worldwide.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , Swine , Animals , Amino Acid Sequence , Viral Proteins/metabolism , Epitopes
7.
Virus Res ; 323: 198971, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36257486

ABSTRACT

Wildlife conservation also relies on the study of animal virome. We identified the DNA of a novel fox protoparvovirus, newlavirus, with high (71%) prevalence in the carcasses of red foxes. On genome sequencing, high genetic diversity and possible recombination was observed, suggesting complex evolutionary dynamics in wildlife.

8.
Pathogens ; 11(12)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36558853

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), emerged in Wuhan city (Hubei province, China) in December 2019, and the World Health Organization (WHO) declared an international public health emergency on 11 March 2020 [...].

9.
Transbound Emerg Dis ; 69(6): 4022-4027, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36150076

ABSTRACT

Crimean-Congo haemorrhagic fever (CCHF) is an emerging tick-borne disease caused by the arbovirus Crimean-Congo haemorrhagic fever virus (CCHFV; family Nairoviridae). Given the public health impact, CCHF is considered a priority disease for the European Union. This study describes the first detection of anti-CCHFV antibodies in transhumant bovines in Italy. Sera from 794 cattle collected across Basilicata region (Southern Italy) were screened using a commercial ELISA kit. The animal-level and herd-level seroprevalences detected were 1.89% [95%CI: 1.12-3.1] and 29.63% [95%CI: 15.68-48.65], respectively. Results of the χ2 test for trend show that the exposure to CCHFV was significantly associated with increasing age, with the odds 5 times higher in 11-22-year old cattle than 1-4-year old cattle. The detection of antibodies against CCHFV in indigenous cattle indicates that the infection occurred in the study area and may warrant further consideration. Additionally, no significant spatial clustering of CCHF infection was detected, supporting the hypothesis that the disease is widespread in the region. Further studies at larger scale are needed to identify the areas at higher risk of zoonotic infection. A One Health approach should be implemented to better understand the disease risk and dynamics in the country, which effectively address the related public health threat.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Cattle , Animals , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Hemorrhagic Fever, Crimean/diagnosis , Zoonoses , Italy/epidemiology , Antibodies, Viral
10.
Front Vet Sci ; 9: 932247, 2022.
Article in English | MEDLINE | ID: mdl-35937285

ABSTRACT

Canine parvovirus (CPV) and feline panleukopenia virus (FPV), now included in the unique species Carnivore protoparvovirus 1 (CPPV1), have been circulating in dogs and cats for several decades and are considered the causes of clinically important diseases, especially in young animals. While genetic evidence of the circulation of parvoviruses in Egyptian domestic carnivores has been provided since 2016, to date, all available data are based on partial fragments of the VP2 gene. This study reports the molecular characterization of CPPV strains from Egypt based on the full VP2 gene. Overall, 196 blood samples were collected from dogs and cats presented at veterinary clinics for routine medical assessment in 2019 in Egypt. DNA extracts were screened and characterized by real-time PCR. Positive samples were amplified by conventional PCR and then were sequenced. Nucleotide and amino acid changes in the sequences were investigated and phylogeny was inferred. Carnivore protoparvovirus DNA was detected in 18 out of 96 dogs (18.8%) and 7 of 100 cats (7%). Phylogenetic analyses based on the full VP2 gene revealed that 9 sequenced strains clustered with different CPV clades (5 with 2c, 2 with 2a, 1 with 2b, and 1 with 2) and 1 strain with the FPV clade. All three CPV variants were detected in dog and cat populations with a predominance of CPV-2c strains (7 of 18, 38.9%) in dog samples, thus mirroring the circulation of this variant in African, European, and Asian countries. Deduced amino acid sequence alignment revealed the presence of the previously unreported unique mutations S542L, H543Q, Q549H, and N557T in the Egyptian CPV-2c strains.

11.
Emerg Infect Dis ; 28(9): 1933-1935, 2022 09.
Article in English | MEDLINE | ID: mdl-35997472

ABSTRACT

Canine parvovirus and feline panleukopenia virus (FPV) are variants of Carnivore protoparvovirus 1. We identified and characterized FPV in dogs from Italy and Egypt using genomic sequencing and phylogenetic analyses. Cost-effective sequencing strategies should be used to monitor interspecies spread, evolution dynamics, and potential host jumping of FPV.


Subject(s)
Feline Panleukopenia , Parvoviridae Infections , Animals , Cats , Dogs , Egypt/epidemiology , Feline Panleukopenia/epidemiology , Feline Panleukopenia Virus/genetics , Parvoviridae Infections/epidemiology , Parvoviridae Infections/veterinary , Phylogeny
12.
Microbiol Spectr ; 10(3): e0078022, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35616383

ABSTRACT

Replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses comprise viruses with covalently closed, circular, single-stranded DNA (ssDNA) genomes, and are considered the smallest known autonomously replicating, capsid-encoding animal pathogens. CRESS DNA viruses (phylum Cressdnaviricota) encompass several viral families including Circoviridae. Circoviruses are classified into two genera, Circovirus and Cyclovirus, and they are known to cause fatal diseases in birds and pigs. Circoviruses have also been identified in human stools, blood, and cerebrospinal fluid (CSF), as well as in various wild and domestic vertebrates, including reptiles. The synanthropic presence of Squamata reptiles has increased in the last century due to the anthropic pressure, which has shifted forested animal behavior to an urban and peri-urban adaptation. In this paper, we explored the diversity of CRESS DNA viruses in Squamata reptiles from different Italian areas representative of the Mediterranean basin. CRESS DNA viruses were detected in 31.7% (33/104) of sampled lizards and geckoes. Different CRESS DNA viruses likely reflected dietary composition or environmental contamination and included avian-like (n = 3), dog (n = 4), bat-like (n = 1), goat-like (n = 1), rodent-like (n = 4), and insect-like (n = 2) viruses. Rep sequences of at least two types of human-associated cycloviruses (CyV) were identified consistently, regardless of geographic location, namely, TN9-like (n = 11) and TN12-like (n = 6). A third human-associated CyV, TN25-like, was detected in a single sample. The complete genome of human-like CyVs, of a rodent-like, insect-like, and of a bat-like virus were generated. Collectively, the results recapitulate hosts dietary and environmental sources of exposure and may suggest unexpected ecological niches for some CRESS DNA viruses. IMPORTANCE CRESS DNA viruses are significant pathogens of birds and pigs and have been detected repeatedly in human samples (stools, serum, and cerebrospinal fluid), both from healthy individuals and from patients with neurological disease, eliciting in 2013 a risk assessment by the European Centre for Disease Prevention and Control (ECDC). Sequences of CRESS DNA viruses previously reported in humans (TN9, TN12, and TN25), and detected in different animal species (e.g., birds, dogs, and bats) were herein detected in fecal samples of synanthropic squamates (geckos and lizards). The complete genome sequence of six viruses was generated. This study extends the information on the genetic diversity and ecology of CRESS DNA viruses. Because geckos and lizards are synanthropic animals, a role in sustaining CRESS DNA virus circulation and increasing viral pressure in the environment is postulated.


Subject(s)
Brassicaceae , Circoviridae , Animals , Birds/genetics , Brassicaceae/genetics , Circoviridae/genetics , DNA Viruses/genetics , DNA, Single-Stranded , DNA, Viral/genetics , Dogs , Genome, Viral , Phylogeny , Swine
13.
Front Vet Sci ; 9: 851987, 2022.
Article in English | MEDLINE | ID: mdl-35433913

ABSTRACT

Wild carnivores are known to play a role in the epidemiology of several canine viruses, including canine adenoviruses types 1 (CAdV-1) and 2 (CAdV-2), canine circovirus (CanineCV) and canine distemper virus (CDV). In the present study, we report an epidemiological survey for these viruses in free ranging carnivores from Italy. A total of 262 wild carnivores, including red foxes (Vulpes vulpes), wolves (Canis lupus) and Eurasian badgers (Meles meles) were sampled. Viral nucleic acid was extracted and screened by real-time PCR assays (qPCR) for the presence of CAdVs and CanineCV DNA, as well as for CDV RNA. CAdV-1 DNA was detected only in red foxes (4/232, 1.7%) whilst the wolves (0/8, 0%) and Eurasian badgers (0/22, 0%) tested negative. CanineCV DNA was detected in 4 (18%) Eurasian badgers, 4 (50%) wolves and 0 (0%) red foxes. None of the animals tested positive for CDV or CAdV-2. By sequence and phylogenetic analyses, CAdV-1 and CanineCV sequences from wild carnivores were closely related to reference sequences from domestic dogs and wild carnivores. Surprisingly, two sequences from wolf intestines were identified as cycloviruses with one sequence (145.20-5432) displaying 68.6% nucleotide identity to a cyclovirus detected in a domestic cat, while the other (145.201329) was more closely related (79.4% nucleotide identity) to a cyclovirus sequence from bats. A continuous surveillance in wild carnivores should be carried out in order to monitor the circulation in wildlife of viruses pathogenic for domestic carnivores and endangered wild species.

14.
Animals (Basel) ; 12(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35268224

ABSTRACT

In recent years, fake scientific news has spread much faster through the Internet and social media within the so-called "infodemic". African Swine Fever (ASF) is a perfect case study to prove how fake news can undermine the public health response, even in the veterinary field. ASF is a highly contagious infective disease affecting exclusively domestic and wild pigs such as wild boars. ASF can cause social damage and economic losses both directly (due to the high mortality rate) and indirectly (due to international sanctions). Although ASF is not a threat to human health, since 2018 newspapers have often reported false or misleading news, ranging from misinterpreted findings/data to fake or alarmistic news. In some cases, fake news was spread, such as the use of snipers at the border of nations to kill wild boars, or those reports concerning possible risks to human health. In order to provide real and fact-based news on epidemics, some organizations have created easy-to-read infographic and iconographic materials, available on their websites, to help the readers identifying the fake news. Indeed, it is crucial that governments and scientific organizations work against fear and anxiety, using simple and clear communication.

15.
Res Vet Sci ; 144: 190-195, 2022 May.
Article in English | MEDLINE | ID: mdl-34838321

ABSTRACT

Severe clinical diseases associated to αCoronavirus (αCoV) infections were recently demonstrated for the first time in humans and a closely related but distinct canine CoV (CCoV) variant was identified in the nasopharyngeal swabs of children with pneumonia hospitalized in Malaysia, in 2017-2018. The complete genome sequence analysis demonstrated that the isolated strain, CCoV-HuPn-2018, was a novel canine-feline-like recombinant virus with a unique nucleoprotein. The occurrence of three human epidemics/pandemic caused by CoVs in the recent years and the detection of CCoV-HuPn-2018, raises questions about the ability of these viruses to overcome species barriers from their reservoirs jumping to humans. Interestingly, in this perspective, it is interesting to consider the report concerning new CCoV strains with a potential dual recombinant origin through partial S-gene exchange with porcine transmissible gastroenteritis virus (TGEV) identified in pups died with acute gastroenteritis in 2009. The significance of the ability of CCoVs to evolve is still unclear, but several questions arisen on the biology of these viruses, focusing important epidemiological outcomes in the field, in terms of both virus evolution and prophylaxis. The new CCoV-Hupn-2018 should lead researchers to pay more attention to the mechanisms of recombination among CoVs, rather than to the onset of variants as a result of mutations, suggesting a continuous monitoring of these viruses and in particular of SARS-CoV-2.


Subject(s)
COVID-19 , Cat Diseases , Coronavirus, Canine , Dog Diseases , Animals , Biology , COVID-19/veterinary , Cats , Coronavirus, Canine/genetics , Dog Diseases/epidemiology , Dogs , Humans , Phylogeny , SARS-CoV-2
16.
Transbound Emerg Dis ; 69(5): 3073-3076, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34469620

ABSTRACT

We monitored the severe acute respiratory syndrome coronavirus 2 antibody response in seven dogs and two cats by using two multispecies ELISA tests, plaque reduction neutralisation test and virus neutralization. SARS-CoV-2 neutralizing antibodies in pets persisted up to 10 months since the first positive testing, thus replicating observations in COVID-19 human patients.


Subject(s)
COVID-19 , Dog Diseases , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/veterinary , Dogs , Humans , Neutralization Tests/veterinary , SARS-CoV-2
17.
Animals (Basel) ; 11(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34944126

ABSTRACT

The evolution of a bovine coronavirus (BCoV) natural infection in a calf persistently infected with bovine viral diarrhea virus (BVDV) was described. The infected calf developed intermittent nasal discharge, diarrhea and hyperthermia. The total number of leukocytes/mL and the absolute differential number of neutrophils and lymphocytes resulted within the normal range, but monocytes increased at T28 (time 28 post-infection). Flow-cytometry analysis evidenced that the CD8+ subpopulation increased at T7 and between T28 and T35. BCoV shedding in nasal discharges and feces was detected up to three weeks post infection and high antibody titers persisted up to T56. The RNA BCoV load increased until T14, contrary to what was observed in a previous study where the fecal excretion of BCoV was significantly lower in the co-infected (BCoV/BVDV) calves than in the calves infected with BCoV only. We can suppose that BVDV may have modulated the BCoV infection exacerbating the long viral excretion, as well as favoring the onset of mutations in the genome of BCoV detected in fecal samples at T21. An extensive study was performed to verify if the selective pressure in the S gene could be a natural mode of variation of BCoV, providing data for the identification of new epidemic strains, genotypes or recombinant betacoronaviruses.

18.
J Vet Sci ; 22(6): e84, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34854267

ABSTRACT

BACKGROUND: Enteritis of an infectious origin is a major cause of productivity and economic losses to cattle producers worldwide. Several pathogens are believed to cause or contribute to the development of calf diarrhea. Astroviruses (AstVs) are neglected enteric pathogens in ruminants, but they have recently gained attention because of their possible association with encephalitis in humans and various animal species, including cattle. OBJECTIVES: This paper describes a large outbreak of neonatal diarrhea in buffalo calves (Bubalus bubalis), characterized by high mortality, which was associated with an AstV infection. METHODS: Following an enteritis outbreak characterized by high morbidity (100%) and mortality (46.2%) in a herd of Mediterranean buffaloes (B. bubalis) in Italy, 16 samples from buffalo calves were tested with the molecular tools for common and uncommon enteric pathogens, including AstV, kobuvirus, and torovirus. RESULTS: The samples tested negative for common enteric viral agents, including Rotavirus A, coronavirus, calicivirus, pestivirus, kobuvirus, and torovirus, while they tested positive for AstV. Overall, 62.5% (10/16) of the samples were positive in a single round reverse transcription polymerase chain reaction (PCR) assay for AstV, and 100% (16/16) were positive when nested PCR was performed. The strains identified in the outbreak showed a clonal origin and shared the closest genetic relationship with bovine AstVs (up to 85% amino acid identity in the capsid). CONCLUSIONS: This report indicates that AstVs should be included in a differential diagnosis of infectious diarrhea in buffalo calves.


Subject(s)
Astroviridae Infections/veterinary , Astroviridae/isolation & purification , Buffaloes/virology , Disease Outbreaks/veterinary , Enteritis/veterinary , Animals , Animals, Newborn , Astroviridae Infections/epidemiology , Astroviridae Infections/virology , Capsid Proteins/genetics , Capsid Proteins/metabolism , Enteritis/virology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Viral , Italy/epidemiology , Phylogeny , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism
19.
Viruses ; 13(6)2021 06 04.
Article in English | MEDLINE | ID: mdl-34200079

ABSTRACT

Parvovirus infections in cats have been well known for around 100 years. Recently, the use of molecular assays and metagenomic approaches for virus discovery and characterization has led to the detection of novel parvovirus lineages and/or species infecting the feline host. However, the involvement of emerging parvoviruses in the onset of gastroenteritis or other feline diseases is still uncertain.


Subject(s)
Animals, Domestic/virology , Cat Diseases/virology , Parvoviridae Infections/veterinary , Parvovirus/genetics , Animals , Cats , Metagenomics , Parvoviridae Infections/virology , Parvovirus/classification , Phylogeny
20.
Viruses ; 13(6)2021 06 17.
Article in English | MEDLINE | ID: mdl-34204394

ABSTRACT

The possible role of viruses in feline liver disease has long remained neglected. However, in 2018, an analogue of human hepatitis B virus was identified in cats. Moreover, antibodies for human hepatitis E have been detected consistently at various prevalence rates in cats. Although the correlation between these viruses and the liver injury in cats must be clarified, hepatotropic viruses might represent an increasing risk for feline and public health.


Subject(s)
Cat Diseases/virology , Communicable Diseases, Emerging/veterinary , Liver/virology , Viral Tropism , Viruses/pathogenicity , Animals , Antibodies, Viral/blood , Cats/virology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Hepatitis E/immunology , Humans , Liver/pathology , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL
...